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Abstract

The paper presents the analysis of the natural frequency of thin-walled open section composite beams. Vlasov’s
classical theory of thin-walled beams is modified to include both the transverse shear and the restrained warping in-
duced shear deformations. A simplified, approximate solution is also presented, in which the effect of the shear de-
formations are considered by Foppl’s theorem. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a companion paper (Kollar, 2001) the governing equations of thin-walled open section composite
beams were presented including the shear deformations both due to the in-plane displacements (flexural
shear) and to restrained warping. A closed form solution was presented for the flexural-torsional buckling
load of columns subjected to an axial force.

In this paper we apply the theory presented (Kollar, 2001) for the natural vibration of composite beams
and derive closed form expressions for the period of vibration or natural frequency.

We will refer to the equations, figures, and tables of paper (Kollar, 2001) by (1-x), where x is the
equation-, figure-, or table number of paper (Kollar, 2001).

2. Problem statement

We consider prismatic beams with thin-walled open cross-sections. The walls of the beams may consist
of a single layer or of several layers, each layer may be made of composite materials. The layup of the walls
can be unsymmetrical, however each wall must be “orthotropic’, which means that axial stresses do not
cause shear strains in the wall.
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The length of the beam is L, both ends are simply supported. The beam vibrates freely, the period of

vibration is 7, which is related to the natural frequency (f), and to the circular frequency (w) by
1 2n o)
=— T==2C - =
/ T w / 2n

We are interested in the natural frequency (period of vibration or circular frequency) of the beam.

In the analysis we assume that the beam behaves in a linearly elastic manner and the deformations are
small. The contour of the cross-section of the beam does not deform in its plane; the normal stresses in the
contour direction are small compared with the axial stresses. The shear deformations in the midsurface of
the walls are considered.

3. Shear deformation theory
The governing equations of the shear deformation theory were presented (Kollar, 2001) and it is not

reiterated here. We recall only that the shear deformations were included in the x—y and x—z planes
(Timoshenko and Gere, 1961)

v L+ ow n (1)
ax - /(y yy ax - Xz yz

and also in twist (Wu and Sun, 1992)
oy
b 2
Ox p + s )

The first terms correspond to the case when there is no shear deformation present, and the cross-section
warps, while the second terms to the case when there is only shear deformation and there is no warping.

The equilibrium equations, the strain—displacement relationships, and the constitutive equations are
given by Egs. (1-1), (1-13), and (1-16)—(1-18).

4. Flexural—torsional vibration

The equilibrium equations of a freely vibrating beam can be obtained by expressing the loads in Eq. (1-1)
as follows (Weaver et al., 1990):
Py = = pwz(U + (26 — zs))
P: - pr(W - lp(yG _ysc)) (3)
t= — pU)Z(U(ZG - Zsc) - W(yG - ysc)) + wZ@lp

where v and w are the displacements in the y and z directions, respectively, Y is the rotation of the cross-
section about the “bending deformation shear center”, w is the circular frequency, y, and z, are the co-
ordinates of the “bending deformation shear center”, p is the mass per unit length, yg and zg are the
coordinates of the center of gravity of the mass from the centroid (Fig. 1), and @ is the polar moment of
mass about the “bending deformation shear center”
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Fig. 1. Coordinates of the bending deformation shear center and the center of gravity of the mass.

where m is the mass per unit volume. To determine the circular frequency of the beam the equilibrium
equations (Egs. (1-1) and (3)), the strain—displacement relationships (Eq. (1-13)) and the constitutive
equations (Egs. (1-16)—(1-18)) must be solved taking the appropriate boundary conditions into account.

For a simply supported beam, when the rotation of the beam about the beam’s axis is prevented and
there are no axial constrains, the boundary conditions are (Egs. (1-38) and (1-39))

v=0 w=0 Yy=0 x=0,L (5)
or, . O . vy B
Ao=0 55=0 =0 x=0.L (6)

We assume the displacements in the following form:

v = vy Sin ax Ay = Xyo COS 0X
w = wy sin ox Az = Xz COS 0X (7)
lp:lﬁ()SiIlO(x 19]3:7.9]30008006
where
7
=— 8
=7 (8)
and vy, ..., U are yet unknown constants. / is the half wavelength, which is
L
I=— k=1,2,... 9
L k=12, ©)

These displacements satisfy the boundary conditions and, as will be shown below, also satisfy the dif-
ferential equation system.

By introducing the displacements (Eq. (7)) into the strain—displacement relationship (Eq. (1-13)), the
strains into the constitutive equations (Egs. (1-16)—(1-18)), and the forces into the equilibrium equations
(Egs. (1-1) and (3)), we obtain from the left three equations of Eq. (1-1)

Do Xy()
0 =al[S;|< wo pcosax — ([Sy] + o [EL;]){ 10 ¢ cosax (10)
Yo ¥po

while from the right three equations of (Eq. (1-1))
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X0 0 0 O vo
0=a[Sy]{ 70 psinox+ | —o?[Sy] = |0 0 0 | +w’p[M] |4 wy psinox (11)
o 0 0 G, Ve

In these equations [S;;] and [E];;] are shear and bending stiffness matrices (see Eqgs. (1-16) and (1-18)). [M]
is given by
1 0 (z6 — zs)
[M} = 0 1 _(yG _ysc) (12)
(ZG - Zsc) _(yG - ysc) @/p
Eliminating y,9, 7.9, ¥po from Egs. (10) and (11), we obtain the following relationship:

00 0 B ) v

o=|]0o 0 o ST e > Py 13

= + (| [S] +E[ ] Y PF[ ] Wo (13)
0 0 GI ; Vo

The non-trivial solutions of this equation gives three eigenvalues A; which are identical to the squares of
the circular frequencies of the beam, /; = »? (i = 1,2, 3). As a rule, all of them belong to coupled flexural-
torsional vibration modes of the beam (Weaver et al., 1990).

When the cross-section has one plane of symmetry, one of the circular frequencies belongs to a flexural
mode and the other two circular frequencies to flexural-torsional modes; while when the cross-section has
two planes of symmetry, the three circular frequencies belong respectively to the flexural modes in the two
planes of symmetry and to the pure torsional mode (when the axis of the beam does not bend).

4.1. Beams with doubly symmetrical cross-sections

We consider beams in which the cross-sections are symmetrical with respect to both the y and the z axes
and the center of gravity of mass coincides with the centroid. For such beams the bending and shear de-
formation shear centers also coincide with the centroid and the principal directions for both bending and
shear stiffnesses coincide with the y and z axes. Consequently, the bending and shear stiffness matrices
simplify to

EL. 0 0 S, 0 0
0 0 EIL, 0 0 S,

The center of gravity of mass is at the origin (yg — ysc = zg — zs« = 0), hence matrix [M] is a diagonal
matrix, and Eq. (13) simplifies to

—— 0 0
7!4EI_~_~ n2§l,y
ol pI2
1 1 0 0 v
0 0 0
Elyy 728, 2
0= np[j" = -’ |0 1 0 Wo (15)
00 2 Yo
2GI,
0 0 . 1 . +n@llr %
BEly ' 12Swn
L R _
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This equation results in three circular frequencies ., ®,, and w,, which correspond to the vibration in the
x—y plane, to the vibration in the x—z plane, and to the pure torsional vibration. By introducing the fol-
lowing definitions:

n*Gl,

2 2

(,Ow , + @lz ( )

4 4 4
g\2  TEL; g\2 _TEL, g\2 _ TEL,

(wz) - pl4 ( y) - ,014 ( (u) - Y8 (17)
., wy, 0, can be calculated from Eq. (15) as follows:

1 1 1 1 1 1 1 1 1

—=———t - =t =t (18)

2 2 28, 2 2 n2S.. 2 2 2S00
AT T O () A @)

Superscript B refers to the bending deformations.

4.2. Cross-sections where the bending and shear centers coincide, and the bending and shear principal directions
are identical

We take the coordinate axis in such a way that the principal directions for the bending stiffnesses lie in
the y and z directions. Consequently, the bending stiffness EI,. is zero (EI,. = 0). In addition we assume that
the bending and shear centers coincide, and the bending and shear principal directions are identical.
Consequently, S,., S, S., are zero, and the bending and the shear stiffness matrices simplify to Eq. (14).
Correspondingly, Eq. (13) simplifies to

w? — 0)3 0 w? (ZG - Zsc) v
2 2 2
0 w0 — o’ (V6 — Yic) wo =0 (19)
o’ (z6 — 2«) _wz(yG = Yse) (w2 - wzzu - 7r(:)?ZIZ) % Vo

where w,, w,, o, are given by Eq. (18).
When the shear deformations are neglected the shear stiffnesses have to be infinite, and Eq. (19) sim-
plifies to

! — (wF)’ 0 (26 — 24)
2 Vo
0 w2 - ((JJ}?) —CUZ(YG _ysc) %) =0 (20)
B\2 _ n’GL \ @ v

(o ~z) ~006 - n) (0F - (0f) %) e

which is identical to the classical solution of flexural-torsional vibration of beams.

4.3. Approximate solution

We derived a condition to calculate the natural frequencies of composite beams with arbitrary cross-
sections (Eq. (13)) taking the shear deformations into account. In this section an approximate solution is
presented.

We take the coordinate axis in such a way that the principal directions for the bending stiffnesses co-
incide with the y and z directions. Consequently, the bending stiffness EI,. is zero (El,, = 0). In the shear
stiffness matrix we neglect the elements out of the main diagonal
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/Syz ~ /S\yw ~ :S\'zw ~0 (21)

By this approximation Eq. (13) simplifies and the circular frequency can be calculated from Eq. (19).
Note that formalistically Eq. (19) is identical to the well-known equation for calculating the circular fre-
quencies of beams without shear deformation (Eq. (20)) if we make the following substitution

Beams without Beams with
shear deformation shear deformation

~1
(w?)z = <( L)v + néﬂ,)
R (22)

-1
2
B 1 1
((Uy) = ( ((uf)z + ﬂljzz>

;)Iz

-1
B2 1 1
(o) = (()*—)

B

B, cuf, and w_ correspond to vibration when the shear stiffnesses §W, §Zz, §ww are infinite, and GI, is zero
(Section 4.1, Eq. (17)),

o P = (n*EL./pl*)"* is the circular frequency if the beam vibrates in the x—y plane,
P = (n*EL,/pi*)' is the circular frequency if the beam vibrates in the x—z plane, and

.wB:

w

(n*El,/@1*)'? is the circular frequency of the torsional vibration.

Superscript B shows that only bending deformations are considered.
It can also be shown that nS,,/pl%, ©°S../pl*, 7*S../@1* correspond to vibrations when the bending
stiffnesses EI,, EL., El,, are infinite, and GI, is zero

. (nzgw / plz)l/ ? is the circular frequency if the beam vibrates in the x—y plane,
. (n2§zz / plz)l/ ? is the circular frequency if the beam vibrates in the x—z plane, and
o (1’Su0/ @12)1/ ? is the circular frequency of the torsional vibration.

We observe that Eq. (22) shows the same structure as the formulas suggested by Foppl (Tarnai, 1999) to
determine the circular frequencies of structures characterized with different stiffnesses. It was shown that,
under certain conditions, the circular frequencies of structures having two stiffnesses, D, and D,, can be
approximated as

5 11\
AR U e e 3
oy W
where w; is the circular frequency of the structure if D, is set equal to infinity, while w, is the circular
frequency of the structure if D, is set equal to infinity.
5. Numerical examples

5.1. Buckling and vibration of an I-beam

We consider a simply supported I-beam. Its length is 800 mm, the dimensions of the cross-section are
shown in Fig. (2). The width of the lower flange can take three different values: b, = 60, 90, and 120 mm.
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Fig. 2. Cross-section of a graphite epoxy composite I-beam.

The beam is made of unidirectional graphite epoxy, the Young modulus in the fiber direction is £, = 138
kN/mm? and the shear modulus is Gy, = 6.9 kN/mm?.

1. The beam is subjected to a compressive force at the end. We are interested in the intensity of the load
when the beam buckles.

2. Masses are attached to the top flange of the beam as illustrated in Fig. 2. The weight of the masses are
M = (10/2) kg/m while the self weight of the beam is neglected. We are interested in the natural frequen-
cies of the beam.

The properties of the cross-sections were calculated according to Table 1-1, and to the Appendix, where
closed form solutions are presented for the shear stiffnesses of U, I, Z, and T beams. Note that for a single
layer

11 o ERW 1 Gh? -~ 1
—=Fh —_ = —_——= e = —
D D12 5, 12 Gh

~

The beam has one axis of symmetry, consequently, we have z, = El,. = E}Z = 8., = 0. The nonzero stiff-
nesses of the beam are

b, = 60 mm b, =90 mm b, = 120 mm
EI, (kNmm?) 552 x 10° 658 x 10° 747 x 10°
EL. (kNmm?) 112 x 10° 141 x 10° 199 x 10°
z, (mm) 75.0 68.2 62.5
Zs (mm) 36.1 19.7 0
Zgse (Mm) -27.8 -16.5 0
2 (mm?) 4513 3902 3806
EI, (kNmm*) 173 x 10° 461 x 10° 776 x 10°
Gl, (kN'mm?) 0.0863 x 10° 0.0949 x 10° 0.104 x 10°
S,y (kN) 5175 6037 6900
Sz (kN) 3850 3783 3718
Soo (kN'mm?) 21962 x 103 24743 x 10° 26953 x 103

S, (KNmm) 143750 99519 0
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5.1.1. Buckling load of the beam
The buckling loads of the beam were calculated both without shear deformations (Eq. (1-53)) and with
shear deformations (Eq. (1-47)). The results are summarized below

b, = 60 mm b, =90 mm b, = 120 mm
NE 1726 2181 3067
NE 8519 10152 11513
NE 589 1821 3145
(1/2)a1, 19.11 24.32 27.19
New 1226 1573 2123
Ner 2652 2756 2810
Nero 513 1392 2178
Without shear deformation (Eq. (1-53))
N 2745 2965 3067
Noo 8519 10152 11513
N 538 1508 3172
With shear deformation, accuratelapproximate (Eq. (1-46)/Eq. (1-52))
N 1905/2018 2059/2191 2123/2123
~ (1909) (2060) (2084)
N 2652/2652 2756/2756 2810/2810
(2693) (2817) (2872)
N 485/455 1207/1130 2205/2205
(488) (1199) (2190)

The approximate calculation was carried out by using Eq. (1-54) with the substitution given in ex-
pression (1-61). It can be seen that the shear deformation significantly reduces the buckling load. The
buckling loads were also calculated by a finite element code (ANSYS), the results are also presented in the
table in parentheses. (Note that for the given configuration the local buckling of the flanges occurs at a
lower load than the global buckling.)

5.1.2. Free vibration of the beam
The mass of the beam and ® about the bending deformation shear center are

p =001 kg/mm O = p(200% + (z6 — z)°)

The distance between the bending deformation shear center and the center of gravity of the mass is
zg — zs. = 127.5 — zy. — z. where z. and z, are given in the above table. The circular frequencies of the freely
vibrating beam were calculated both without shear deformation (Eq. (20)) and with shear deformation (Eq.
(13)). The results are summarized below
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b, = 60 mm b, =90 mm b, = 120 mm
6 =403 0 =416 O =442
B, 1.632 1.834 2.175
a)?ry 3.625 3.957 4213
s 0.319 0.513 0.646
(Gl O )" 0.0575 0.0593 0.0601
Wers 1.375 1.557 1.810
Dery 2.022 2.062 2.082
Derer 0.299 0.449 0.538
Without shear deformation (Eq. (20))
Werl 1.638 1.873 2.297
W2 3.625 3.957 4.214
Wer3 0.324 0.516 0.646
With shear deformation, accuratelapproximate (Eq. (13)/Eq. (19))
Werl 1.383/1.380 1.588/1.591 1.912/1.912
Werd 2.022/2.022 2.062/2.062 2.082/2.082
W 0.304/0.303 0.454/0.452 0.538/0.538

The approximate calculation was carried out by using Eq. (20) with the substitution given in expression
(22). It can be seen that the shear deformation significantly reduces the circular frequency.

5.2. Buckling and vibration of a stiffened beam

We consider a symmetrical I-beam which is stiffened as shown in Fig. 3. The length, end conditions,
material properties, and attached masses are identical to those of the previous example. We are interested in
the buckling load and natural frequencies of the beam.

The results are given below

Without shear deformation

N,. = 7483 kN Noy = 14196 kN N, = 10351

We = 3.596 Wery = 4.679 Wery = 1.165

With shear deformation

N,. = 3761 kN (3640 kN) Noy = 2641 kN (2970 kN) N = 5188 kN (5118 kN)
W = 2.548 Wery = 2.018 Werey = 0.8242

The forces in parentheses were calculated with the FE (ANSYS) code. This example further illustrates
that the shear deformation due to torsion significantly reduces the buckling load and the circular frequency.
(The stiffnesses of the beam are: EI, = 920.5 x 10° kN mm?, EL. = 485.2 x 10° kN mm?, E1,, = 2548 x 10°
kN mm?*, GI, = 0.120750 x 10° kN mm?, 2 = 3808 mm, Sy, = 7561 kN, S.. = 3245 kN, S, = 39239 kN.)
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Fig. 3. Cross-section of a graphite epoxy stiffened beam.

6. Conclusion

In this paper we applied the governing equations of thin-walled open section composite beams (Kollar,
2001) including the effect of shear deformations both due to the in-plane displacements and to restrained
warping for calculating the circular frequencies of freely vibrating beams. Closed form solutions were
derived for the simply supported beams (Eq. (13)), and an approximate solution was also suggested, in
which the well known solution of beams without shear deformations (Eq. (20)) can be used by simply
reducing three terms due to the shear deformations (Eq. (22)). This solution has the advantage that it shows
directly the effect of shear deformation on the circular frequency.
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Appendix A. Shear stiffnesses of composite beams of I, U, Z and T cross-sections

Here we determine the elements of the shear compliance matrix (5;;) of four important cross-sections.
We assume that the coordinates of the centroid (denoted by a dot in a circle) and the location of the shear
center (=bending deformation shear center, denoted by a dot) are known (see Table 1-1).

A.1. I-beam

We consider an I-beam (Fig. 4) which has one axis of symmetry. The web is symmetrical, the top and
bottom flanges can be unsymmetrical. The dimensions of the cross-section are shown in Fig. 4.

The shear flows from unit shear forces V. =1 and ¥, =1 acting at the (bending deformation) shear
center, and from a unit torque 7 = 1, are given in Fig. 4. In the calculation we made the approximation
that the shear flow in the web from ¥, is constant. The intensities were calculated from the equilibrium
equations. Jy is calculated from the location of the (bending deformation) shear center

d— (ze + z)

550 =
(ze + 2s)

(A1)
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V.= 17\ 7 = 3 go— 3
by Pz - TS " 2b,(1+6,) ! 2dby,
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Fig. 4. I-beam and the shear flows from unit forces.

We calculate the shear compliances from (Eq. (1-27)) applying the row for ¢gs of Table 1. We obtain

~ _ (%66) (o66)
5, = / R f; : o (A2)
f’l( + sc) bﬂ(l_’_(s_L)
where p = 1.2
o[~ o (B, 1 (@es)pibr 1 (%6) by
S.. = / Oeeq. ds = 7 + B 7 B 7 (A.3)
. (%66)  (%es)
Aw(o = 2 ds = ﬁ A 2 A4
y / *6lo S =2\ "o T, (A4)
~ ~ P (&66) f1 (&66) 12
Syw = / O‘ﬁéquwds =5 | - ) ) (AS)
d bf](l'f‘(ssc) bfz(l _|_()1:)
5. = /&66%% ds=0 S = /&%qzqw ds=0 (A.6)

A.2. U-beam

We consider a U-beam (Fig. 5) which has one axis of symmetry. The web and the flanges may have
unsymmetrical layups, but the top and bottom flanges are identical. The dimensions of the cross-section are
shown in Fig. 5.

The shear flows from unit shear forces V. = 1 and I7y =1 acting at the (bending deformation) shear
center, and from a unit torque T = 1, are given in Fig. 5. In the calculation we made the approximation
that the shear flow in the web from 7, is constant. The intensities can be calculated from the equilibrium
equations. When the cross-section is subjected to ¥, = 1, force equilibrium in the y direction gives

dr
1:2/ qds
0

= 2qyudf '}’1 (A7)

Flange 1
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Table 1
Integrals to evaluate the shear compliances
Function ¢ fol gdx fol q*dx
11
g =x : 5
1z
— (402 -2 24358 _ 8+156-105°430°
4 =" # 3(1-0%)(1+0) ¥ 15(1-6) (1+9)
43
1 gs = 25! 0 1
-0.5 1z
A
I ] s =32 — 2x 0 z
lz
\q5
i m gs = 4x(1 —x) 2 3
i 1z

1 1 1 1
/ q1g2dx = ¥ / f11qde:§ / q294dx = ¥,
JO 0 0

54120465 — 48" — 35 2-6-38
TR+ (1-0) T 30(1-4)
P 1 -6-20" _3(1-
LRy 1 3-6-28 3(1-9)
7] 7, 2 2

Py 15-0-28 5-6 W, 3-25-45
2 24 8 7 30

‘I’z/‘I’f = p varies in a narrow range from 1.125 to 1.2 while the second order approximate expressions (for 1/¥,, ¥5/¥,, and ¥4/ ¥))
are practically identical to the accurate expressions when 0 << 1.
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Fig. 5. U-beam and the shear flows from unit forces.

where ¥, is given in Table 1 and must be evaluated at 6 = 6,. From Eq. (A.7) we obtain
1 13-9,-25
T =2a,w, " 24, 2

(A.8)

0, can be obtained from the fact that the maximum of the shear flow coincide with the location of zero
stress from bending, and consequently with the centroid

5, = dr — Y (A.9)
Ve

When the cross-section is subjected to V. =1, force equilibrium in the z direction gives ¢.. = 1/d.
Furthermore, when the cross-section is subjected to a unit torque 7 = 1, the moment equilibrium yields

dr
lzd/ qds
0

where ¥, is given in Table 1 and must be evaluated at 6 = J,,. From Eq. (A.10) we obtain
1 13-4,-265
dd;¥, "~ ddy 2

== dq(wdf'ftl (AIO)

Flange 1

qou = (All)

d,, can be obtained from the fact that the maximum of the shear flow coincide with the zero axial stress
from torque. The axial force for unit width is proportional to the area swept out by a generator, rotating
about the center of twist, and to the axial stiffness of the wall ¢;,/D (Table 1-1). Hence we can write (Fig. 6)

_dfon\ _d, (o
et(3) (%) e

where e is the location of the (bending deformation) shear center, as indicated in Fig. 6. We have (Fig. 6 and
Eq. (A.12))

%

S l=bu/d dp 4y (%)
s

o, = Lol o _ e (3) (A.13)
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Fig. 6. Distribution of the force per unit width in a C-beam.

For symmetrical layup J,,/D can be replaced by 1/a;;, while for a wall consists of a single layer, d;,/D
can be replaced by FEh.
The shear compliances can be calculated as follows (Eq. (1-27))

N - - 1, -
Sy = / oc66q§ ds = 2‘I’2d/-q§u(a66)f + dfq}zw(oc%)w

3
1, (Ges) 1

= = d=q* (& A.l14

2 W% df + 3qyu(oc66)w ( )
~
p=1.2

s o (Fes), | 2 (%es),ds

szzf/oc%qz ds = 7 +§ 7 (A.15)

3 —/a st—iﬁ(&“)udlz(& ) (A.16)

wn — 664, - a2 lP% df Sqwu 66/ .

p=1.2

~ . 27 2 . 15-6,-28

Sz = / %66q-90 ds = 7 ?1(0666)/ ~ E(OC%)fT (A.17)

5.= [Guaads =0 5= [ Fuaguds =0 (A18)

A.3. Z-beam

We consider a Z-beam (Fig. 7) which is symmetrical with respect to its centroid. The layup of the web is
symmetrical and the flanges may have unsymmetrical layups. The dimensions of the cross-section are
shown in Fig. 7. R R

The shear flows from unit shear forces V. =1 and ¥, =1 acting at the (bending deformation) shear
center, and from a unit torque 7 = 1, are given in Fig. 7. In the calculation we made the approximation
that the shear flow in the web from 7} is constant. The intensities can be calculated from the equilibrium
equations. The detailed analysis is not given here. The results are
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Fig. 7. Z-beam and the shear flows from unit forces.

1 1 3-6,-25
_ ~ L A.19
b= 2w T2, 2 (A19)
_ _ 2
Gon = — L 3700 =20, (A.20)
dd, ¥, " dd, 2
b,/d; b 1
o= - A2l
TR 4 ) A2
245 =y
\ d”(%)f
bm/df bw 1
Sp=—t e A22
1 —b,/d; dy d(%)‘ ( )

The shear compliances can be calculated as follows (Eq. (1-26))

~ ~ 1 lPZ <&66)f' 1 ~
Sy = / Sl =5 i g a5 G, (A.23)
~—
p=1.2
~ ~ 24 (&66)W 4 (&Gé)j'df
S, = / ocﬁéqz dS = d +E d2 (A24)
3 —/& 2 gy 2P )y 1 (Gies) (A.25)
0o — 664, - a2 T% d/ 3q(/)z 66 )y .
~—
pr1.2
~ ~ ¥, (%), (des), 3 —25 —48°
Sz / ooty g ds = 5 —5 d 30 (A.26)

Tg\y(u = /&66qu(u ds=0 ,§y(» = /&66qu«) ds=0 (A27)
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Fig. 8. T-beam and the shear flows from unit forces.

A.4. T-beam

We consider a T-beam (Fig. 8) which is symmetrical with respect to the z axis. The layup of the web is
symmetrical and the flange may have unsymmetrical layup. The dimensions of the cross-section are shown
in Fig. 8.

The shear flows from unit shear forces V.=1 and I7y =1 acting at the (bending deformation) shear
center are given in Fig. 8. The torque 7 results in a distributed moment, but ¢,, is zero. The intensities can
be calculated from the equilibrium equations. The detailed analysis is not given here. The results are

R - (tgs),, P | .
Sz = / 0666q§ ds = b, ?% +E (a66)/‘bfq3; (A.28)
~~
p=1.2
Lee) -
%:/%¢m:(?q (A.29)
f
/S\wm = o0 (A30)
fs'\zy = 3‘\wy = 3'\u)z =0 (A31)

g, 1s the shear flow at the top of the web, defined as

1 3-45.-28
d_‘I’l ~ —g (A.32)

0, 1s a parameter specifying the position of the centroid (Fig. 8).

gz =
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